191 research outputs found

    Mesenchymal stromal cells and autoimmunity.

    Get PDF
    Abstract Mesenchymal stromal cells (MSCs) are committed progenitors of mesodermal origin that are found virtually in every organ and exhibit multilineage differentiation into osteocytes, adipocytes and chondrocytes. MSCs also mediate a wide spectrum of immunoregulatory activities that usually dampen innate and adaptive immune responses. These features have attracted interest in the perspective of developing novel cell therapies for autoimmune disease. However, depending on the microenvironmental conditions, MSCs may show a plastic behavior and switch to an immunostimulatory phenotype. After thorough characterization of the effects of MSCs on the immune system, MSC cell therapy has been tested in animal models of autoimmunity using different cell sources, protocols of in vitro expansion and routes and schedules of administration. The pre-clinical results have been encouraging in some models [e.g. Crohn's disease (CD), multiple sclerosis] and heterogeneous in others (e.g. graft-versus-host disease, systemic lupus erythematosus, rheumatoid arthritis). Clinical trials have been carried out and many are ongoing. As discussed, the results obtained are too preliminary to draw any conclusion, with the only exception of topical administration of MSCs in CD that has proven efficacious. The mechanism of action of infused MSCs is still under investigation, but the apparent paradox of a therapeutic effect achieved in spite of the very low number of cells reaching the target organ has been solved by the finding that MSC-derived extracellular vesicles (EVs) closely mimic the therapeutic activity of MSCs in pre-clinical models. These issues are critically discussed in view of the potential clinical use of MSC-derived EVs

    Not proper ROC curves as new tool for the analysis of differentially expressed genes in microarray experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most microarray experiments are carried out with the purpose of identifying genes whose expression varies in relation with specific conditions or in response to environmental stimuli. In such studies, genes showing similar mean expression values between two or more groups are considered as not differentially expressed, even if hidden subclasses with different expression values may exist. In this paper we propose a new method for identifying differentially expressed genes, based on the area between the ROC curve and the rising diagonal (<it>ABCR</it>). <it>ABCR </it>represents a more general approach than the standard area under the ROC curve (<it>AUC</it>), because it can identify both proper (<it>i.e.</it>, concave) and not proper ROC curves (NPRC). In particular, NPRC may correspond to those genes that tend to escape standard selection methods.</p> <p>Results</p> <p>We assessed the performance of our method using data from a publicly available database of 4026 genes, including 14 normal B cell samples (NBC) and 20 heterogeneous lymphomas (namely: 9 follicular lymphomas and 11 chronic lymphocytic leukemias). Moreover, NBC also included two sub-classes, <it>i.e.</it>, 6 heavily stimulated and 8 slightly or not stimulated samples. We identified 1607 differentially expressed genes with an estimated False Discovery Rate of 15%. Among them, 16 corresponded to NPRC and all escaped standard selection procedures based on <it>AUC </it>and <it>t </it>statistics. Moreover, a simple inspection to the shape of such plots allowed to identify the two subclasses in either one class in 13 cases (81%).</p> <p>Conclusion</p> <p>NPRC represent a new useful tool for the analysis of microarray data.</p

    Dexamethasone Prophylaxis in Pediatric Open Heart Surgery Is Associated with Increased Blood Long Pentraxin PTX3: Potential Clinical Implications

    Get PDF
    Glucocorticoid administration before cardiopulmonary bypass (CPB) can reduce the systemic inflammatory response and improve clinical outcome. Long pentraxin PTX3 is a novel inflammatory parameter that could play a protective cardiovascular role by regulating inflammation. Twenty-nine children undergoing open heart surgery were enrolled in the study. Fourteen received dexamethasone (1st dose 1.5 mg/Kg i.v. or i.m. the evening before surgery; 2nd dose 1.5 mg/kg i.v. before starting bypass) and fifteen children served as control. Blood PTX3, short pentraxin C-reactive protein (CRP), interleukin-1 receptor II (IL-1RII), fibrinogen and partial thromboplastin time (PTT) were assayed at different times. PTX3 levels significantly increased during CPB in dexamethasone-treated (+D) and dexamethasone-untreated (−D) subjects, but were significantly higher in +D than −D patients. CRP levels significantly increased both in +D and −D patients in the postoperative days, with values significantly higher in −D than +D patients. Fibrinogen and PTT values were significantly higher in −D than +D patients in the 1st postoperative day. IL-1RII plasma levels increased in the postoperative period in both groups. Dexamethasone prophylaxis in pediatric patients undergoing CPB for cardiac surgery is associated with a significant increase of blood PTX3 that could contribute to decreasing inflammatory parameters and improving patient clinical outcome

    Structure-activity relationships of novel substituted naphthalene diimides as anticancer agents

    Get PDF
    Novel 1,4,5,8-naphthalenetetracarboxylic diimide (NDI) derivatives were synthesized and evaluated for their antiproliferative activity on a wide number of different tumor cell lines. The prototypes of the present series were derivatives 1 and 2 characterized by interesting biological profiles as anticancer agents. The present investigation expands on the study of structure-activity relationships of prototypes 1 and 2, namely, the influence of the different substituents of the phenyl rings on the biological activity. Derivatives 3-22, characterized by a different substituent on the aromatic rings and/or a different chain length varying from two to three carbon units, were synthesized and evaluated for their cytostatic and cytotoxic activities. The most interesting compound was 20, characterized by a linker of three methylene units and a 2,3,4-trimethoxy substituent on the two aromatic rings. It displayed antiproliferative activity in the submicromolar range, especially against some different cell lines, the ability to inhibit Taq polymerase and telomerase, to trigger caspase activation by a possible oxidative mechanism, to downregulate ERK 2 protein and to inhibit ERKs phosphorylation, without acting directly on microtubules and tubuline. Its theoretical recognition against duplex and quadruplex DNA structures have been compared to experimental thermodynamic measurements and by molecular modeling investigation leading to putative binding modes. Taken together these findings contribute to define this compound as potential Multitarget-Directed Ligands interacting simultaneously with different biological targets.This research was supported by a grant from MIUR, Rome (PRIN), University of Bologna (RFO) and Polo Scientifico-Didattico di Rimini (to V.T.). We thank the National Cancer Institute (Bethesda, MD) for the anticancer assays. MICINN (Spanish Government) is acknowledged for grant BIO2010-16351 (to J.F.D.). Lizzia Raffaghello is a recipient of MFAG Grant. Giovanna Bianchi is a recipient of a FIRC fellowship

    CD38 and bone marrow microenvironment.

    Get PDF
    This review summarizes the events ruled by CD38 shaping the bone marrow environment, recapitulating old and new aspects derived from the body of knowledge on the molecule. The disease models considered were myeloma and chronic lymphocytic leukemia (CLL). CD38 has been analyzed considering its twin function as receptor and enzyme, roles usually not considered in clinics, where it is used as a routine marker. Another aspect pertaining basic science concerns the role of the molecule as a member of an ectoenzyme network, potentially metabolizing soluble factors not yet analyzed (e.g., NAD+, ATP, NAM) or influencing hormone secretion (e.g., oxytocin). The last point is focused on the use of CD38 as a target of an antibody-mediated therapeutic approach in myeloma and CLL. A recent observation is that CD38 may run an escape circuit leading to the production of adenosine. The generation of local anergy may be blocked by using anti-CD38 antibodies. Consequently, not only might CD38 be a prime target for mAb-mediated therapy, but its functional block may contribute to general improvement in cancer immunotherapy and outcomes

    Phenotypic and functional characterisation of CCR7(+ )and CCR7(- )CD4(+ )memory T cells homing to the joints in juvenile idiopathic arthritis

    Get PDF
    The aim of the study was to characterise CCR7(+ )and CCR7(- )memory T cells infiltrating the inflamed joints of patients with juvenile idiopathic arthritis (JIA) and to investigate the functional and anatomical heterogeneity of these cell subsets in relation to the expression of the inflammatory chemokine receptors CXCR3 and CCR5. Memory T cells freshly isolated from the peripheral blood and synovial fluid (SF) of 25 patients with JIA were tested for the expression of CCR7, CCR5, CXCR3 and interferon-γ by flow cytometry. The chemotactic activity of CD4 SF memory T cells from eight patients with JIA to inflammatory (CXCL11 and CCL3) and homeostatic (CCL19, CCL21) chemokines was also evaluated. Paired serum and SF samples from 28 patients with JIA were tested for CCL21 concentrations. CCR7, CXCR3, CCR5 and CCL21 expression in synovial tissue from six patients with JIA was investigated by immunohistochemistry. Enrichment of CD4(+), CCR7(- )memory T cells was demonstrated in SF in comparison with paired blood from patients with JIA. SF CD4(+)CCR7(- )memory T cells were enriched for CCR5(+ )and interferon-γ(+ )cells, whereas CD4(+)CCR7(+ )memory T cells showed higher coexpression of CXCR3. Expression of CCL21 was detected in both SF and synovial membranes. SF CD4(+ )memory T cells displayed significant migration to both inflammatory and homeostatic chemokines. CCR7(+ )T cells were detected in the synovial tissue in either diffuse perivascular lymphocytic infiltrates or organised lymphoid aggregates. In synovial tissue, a large fraction of CCR7(+ )cells co-localised with CXCR3, especially inside lymphoid aggregates, whereas CCR5(+ )cells were enriched in the sublining of the superficial subintima. In conclusion, CCR7 may have a role in the synovial recruitment of memory T cells in JIA, irrespective of the pattern of lymphoid organisation. Moreover, discrete patterns of chemokine receptor expression are detected in the synovial tissue

    IL-25 dampens the growth of human germinal center-derived B-cell non Hodgkin Lymphoma by curtailing neoangiogenesis

    Get PDF
    Interleukin (IL)-25, a member of the IL-17 cytokine superfamily, is produced by immune and non-immune cells and exerts type 2 pro-inflammatory effects in vitro and in vivo. The IL-25 receptor(R) is composed of the IL-17RA/IL-17RB subunits. Previous work showed that germinal centre (GC)-derived B-cell non Hodgkin lymphomas (B-NHL) expressed IL-17AR, formed by IL-17RA and IL-17RC subunits, and IL-17A/IL-17AR axis promoted B-NHL growth by stimulating neoangiogenesis. Here, we have investigated expression and function of IL-25/IL-25R axis in lymph nodes from human GC-derived B-NHL, i.e. Follicular Lymphoma (FL,10 cases), Diffuse Large B Cell Lymphoma (6 cases) and Burkitt Lymphoma (3 cases). Tumor cells expressed IL-25R and IL-25 that was detected also in non-malignant cells by flow cytometry. Immunohistochemical studies confirmed expression of IL-25R and IL-25 in FL cells, and highlighted IL-25 expression in bystander elements of the FL microenvironment. IL-25 i) up-regulated phosphorylation of NFkBp65, STAT-1 and JNK in B-NHL cells; ii) inhibited in vitro proliferation of the latter cells; iii) exerted anti-tumor activity in two in vivo B-NHL models by dampening expression of pro-angiogenic molecules as VEGF-C, CXCL6 and ANGPT3. In conclusion, IL-25, that is intrinsically pro-angiogenic, inhibits B-NHL growth by reprogramming the angiogenic phenotype of B-NHL cells
    corecore